3-D camera earns its stripes

0 Comments

3D camera earns its stripes at Rice
Patterns adorns a static model used to test Rice University’s Hyperspectral Stripe Projector, which combines spectroscopic and 3D imaging. Barcode-like black and white patterns are displayed on the DMD to generate the hyperspectral stripes. Credit: Kelly Lab/Rice University

Stripes are in fashion this season at a Rice University lab, where researchers use them to make images that plain cameras could never capture.


Their compact Hyperspectral Stripe Projector (HSP) is a step toward a new method to collect the spatial and spectral information required for self-driving cars, machine vision, crop monitoring, surface wear and corrosion detection and other applications.

“I can envision this technology in the hands of a farmer, or on a drone, to look at a field and see not only the nutrients and water content of plants but also, because of the 3-D aspect, the height of the crops,” said Kevin Kelly, an associate professor of electrical and computer engineering at Rice’s Brown School of Engineering. “Or perhaps it can look at a painting and see the surface colors and texture in detail, but with near-infrared also see underneath to the canvas.”

Kelly’s lab could enable 3-D spectroscopy on the fly with a system that combines the HSP, a monochrome sensor array and sophisticated programming to give users a more complete picture of an object’s shape and composition.

“We’re getting four-dimensional information from an image, three spatial and one spectral, in real time,” Kelly said. “Other people use multiple modulators and thus require bright light sources to accomplish this, but we found we could do it with a light source of normal brightness and some clever optics.”

3D camera earns its stripes at Rice
A 3D point cloud of objects reconstructed by Rice University’s Hyperspectral Stripe Projector- based imaging system. The monochrome camera also captures spectral data for each point to provide not only the