Scientists use CRISPR to edit structural gene in organism that causes leishmaniasis — ScienceDaily

0 Comments

Scientists are planning for Phase 1 human trials of a vaccine they developed by using CRISPR gene-editing technology to mutate the parasite that causes leishmaniasis, a skin disease common in tropical regions of the world and gaining ground in the United States.

In a series of animal studies, the vaccine protected mice against the disease — including mice with compromised immune systems and mice exposed to the parasite in the same way humans are, through the bite of infected sand flies.

“If you assure protection in the sand fly model, then you have a good shot at a real vaccine,” said Abhay Satoskar, a co-lead investigator of the work and professor of pathology and microbiology at The Ohio State University.

The team applied the new technology to the century-old Middle Eastern practice of leishmanization — deliberately introducing the live parasite to the skin to create a small infection that, once healed, leads to life-long immunity against further disease.

“Live vaccines like that are the best vaccines, but there’s a potential risk of causing serious disease in some people,” Satoskar said. “We refined the concept using modern technology, making a parasite that does not cause clinical disease but allows for induction of immunity.”

The research was published recently in Nature Communications.

An estimated 1.5 million new cases of cutaneous leishmaniasis, caused by the Leishmania major parasite, are diagnosed worldwide each year, primarily in tropical and subtropical regions of the world — but also in southern Texas.

Leishmania in all of its forms is considered a neglected disease, mostly affecting populations in warm-weather developing countries — currently infecting about 12 million in all. But Satoskar noted that with global warming, it’s only a matter of time until the southern United States is considered a subtropical region.

“As the warmth moves up